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The propagation of free and semibounded jets in a homogeneous mag- 
netic field is investigated by the integral method based onthe equations 
of a two-dimemional laminar boundary layer in the noninductive ap- 
proximation (Re m << 1) with the variation of conductivity across the 
jet taken approximately into account. 

The applicat ion of the in tegra l  method to the so lu-  
tion of p roblems on the propagat ion of two-dimensional  
jets  of conductive fluid in a homogeneous magnetic  
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Fig. 1. Var ia t ion  of Um (dashed l ines)  and 5 (solid 
l ines)  in  the f ree  jet at var ious  values  of N. 

f ield at constant  medium conductivi ty was descr ibed  
in [1]. We examine the same prob lems  with al lowance 
for var ia t ion  of the conductivity ac ross  the jet. In p a r -  
t icular ,  the inject ion of a s t rongly  heated jet  of con-  
ductive fluid into a low- tempera tu re  region  and the 
converse  problem are  invest igated.  In the case  of a 
boundary jet it is a s sumed  that the wall is at the tem-  
pe ra tu re  of the sur rounding  medium. The var ia t ion  of 
conductivi ty over the c ross  section of noniso thermal  
jets is  qual i ta t ively given as 
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The magnetic Reynolds number s  Re m are  a s sumed  to 
be smal l ,  and the induction c u r r e n t s  a re  s h o r t - c i r -  
cuited. A solution is  p resen ted  for the "open c i rcu i t "  
reg ime  and for constant  medium conductivity. 

Following the in tegra l  method, we look for a so lu-  
tion of the s ta r t ing  boundary layer  equations in the 
form 

u = u ~ F ( v ) ,  .v  = 8 ( x ) ~ .  

As usual ,  the d imens ion less  velocity prof i le  is token 
as a polynomial  sat isfying the boundary conditions.  
For  s impl ic i ty  we will l imi t  the calculat ion to three  
t e r m s .  The functions urn(x) and 6(x) a re  de termined 
f rom the different ial  equations.  

We r e p r e se n t  the boundary condit ions and the ex- 
p r e s s i ons  for the d imens ion less  veloci ty profi le  for 
a semibounded jet  (a) and for a f ree  jet  (b) as follows: 

a) F(0)=0, F(q,,,,) = 1, F(~o)=0, 

b) F(0)=1 ,  F ' (0 )=0 ,  F(oo)=0,  

27 
a) F (q)) = -~- (ep --2go' + qr 

b) F (qD = 1--2q~ ~ + qA, 

a) ~m =0.333, 1~) ~m =0. 

F r o m  the s ta r t ing  sys tem we de te rmine  the scale  
functions urn(x) and ~(x) through 

du~m 02U Y=Ym a) u m dx = ~ --Oy ~ - -  Num' 

b) u,,~ du--e-~ = v O'u l - -  NUm; 
dx O f  iy=o 

i (; ;(,; d u. ~ udy) a) dy = d9, 
t 

0 0 ~ 0 

b) ~xx u~dy = N udy, 

which can be rewr i t t en  thus 

a) 6 ~ I dum + N )  + 1 3 s  

b) 6 ~ I du~ N )  ~-~-x + +4=0, 

dum ~x k~ 6 a) 3 ~ + 2 .  + N k ~  ~ 0 ~  

b) 2 du~ d 6 N k, 6 = 0 .  
dx + U dx + k~ 

Here 

r (p 

a) F' (i pd )d  =0012, 
0 0 

b) kl = S F~dqD =0.407, 
0 

0 0 

b) ke = i FdqJ =0.533. 
0 
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Integrat ing these equations for 5(0) = 0, we obtain 

i ~d6 a) Cx~= (~N~+81]~,  
o 4 /  

5 

V*d~ 
b) Cxv= (XN62+8) p , 

0 

a) u~=XN~ SL 1 ~ + _  8 

88 ' '  

orB 2 
lq 

a) ~ :  3 1 kz _22 ~_ l  N - -  
2 - ' - - - 2  k-~' P =  3 ' 2L' 

b) L = 2 - -  k~ 3 1 N =  aB__~ 2. 
k~-' p : - 4  "+" 2~-' 

To de te rmine  the constant  C we in tegra te  the s e c -  
ond of the s ta r t ing  equations along the x axis 

x y 

0 0 0 0 0 

= Eo = const; 

b) S u2dg + N udg) dx = Io = const. 
0 0 0 

The equations obtained a re  the in tegra l  "conse rva-  
tion condit ions" for the p rob lems  in  quest ion.  We note 
that when N ~ 0 both the f i r s t  and second in tegra l s  in 
these express ions  depend on x, but their  sum r e ma i ns  
constant  for any value of N and equal to the value of 
the f i r s t  in tegra l  at the point x = 0. As dis t inc t  f rom 
this,  in the absence  of a magnet ic  field (N = 0) the va l -  

ues  of i u~ (S udg.)dy for the semibounded jet  and o f  

o 0 

i u~dy for the f ree  r e m a i n  constant  along the jet  jet  
0 

and equal to E0 and I0, respec t ive ly .  
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Fig. 2. Shear s t r e s s  as  a function 
of the p a r a m e t e r  N in the s emi -  

bounded jet.  

Evaluat ing the in tegra l s ,  us ing  the solution p r e -  
sented above, we find that 

An ana lys i s  of the solut ions obtained shows that in 
both cases  an inc rease  in the magnet ic  field leads to 
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Fig. 3. Var ia t ion  of u m (dashed l ines) and 6 (solid 
l ines) for the free jet. 

an inc rease  in the width of the jet, and a decrease  in 
the max imum velocity (Fig. 1, f ree  jet). For  any va l -  
ue of the p a r a m e t e r  N the jet  is decelera ted  at a finite 
dis tance f rom the source  (x = 0), as seen from Fig. 2, 
which shows the var ia t ion  of the shear  s t r e s s  at the 

wall ~ = 27 ~ ~ '~=~ in a semibounded 

jet.  Quali tat ively,  these eha rae t e r i s t i e s  of the effeet 
of the magnet ie  field on the development  of the j e t a l s e  
apply to the ease of a s t rongly  heated jet injeeted into 
a cold medium.  

We will now consider  the p rob lem of va r iab le  eon- 
duetivity. The solut ions a re  de te rmined  from the r e l a -  
t ions p resen ted  above with the following values  for the 
cons tants :  

for in ject ion of a hot jet into a cold medium 

f (t" : 0  369, 
0 0 

b) k~ =ks = i F2dg~ =0.416, 
0 

for  in jec t ion  of a cold jet  into a hot medium 

! 

j" F(1--F)dcp 
a) ~,= o =0.313, 

1 

j ' F2d cp 
0 

.i' (.t' 
b) 7. = 0 0 --0,908. 

1 ~p 

0 0 

In the la t te r ,  as d is t inc t  f rom the preceding eases ,  
with an ine rease  in the magnet ic  field both the effee- ' 
t i r e  width of the jet and the max imum velocity in a 
fixed seet ion decrease  (Fig. 3, f ree  jet). 

The solut ions obtained reIa te  to the sho r t - e i r eu i t  
r eg ime .  If the induced cu r ren t s  a re  elosed ae ross  a 
ve ry  large external  r e s i s t ance  and the total  cu r r en t  
is close to zero, the in tegra l  conditions r e t a in  the 
same form as in the absence of a field. For  example, 
for  a hot jet  injected into a cold medium the induced 
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cur ren t s  a re  closed within the width of the jet. In this 
case the solutions a r e  de termined  f rom the c o r respond-  
ing express ions  presented above with k2 equal to zero 
(k2 = o ) .  

The approximate express ions  for  the conductivity 
of the medium do not ref lec t  the dec rease  in conduc-  
tivity along the jet axis.  (In this case  the body force  
along the jet axis dec reases  only as a resu l t  of thefal l  
in velocity.  ) This is accounted for by employing the 
approximation ~ ~ ~o(u/u,) (u, = const). Then, the 
"open c i rcu i t"  reg ime we have 

(la/.kl e~N~ 1)3/4 

a) 8 = \ V N  N ' ' 

b) 6 [~/~--~ 4(eaN---~l)]2/3, 

a). Urn .= V - -  

Io 1 
b) Um = k-~ ~ - "  

The difference between the solutions for the two 
different approximations of the conductivity equation 
is re la t ively  small .  
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